Supplement: A Priori Habitat Accounts for Candy Darter and Ancillary Data

Supplementary Table S.1. Previous accounts of instream habitat associations of Candy Darters. "Predicted relationship" refers to the expected correlations between Candy Darter density and a habitat gradient interpreted from the references listed below (e.g., adult density increases as water velocity increases, but adult density decreases as water depth increases; Kuehne and Barbour 1983). Predicted relationships were not applicable (NA) if information was not available for variables at specific life stages. Asterisks indicate primary literature.

			Predicted
Variable	Life stage	Habitat description	relationship
Water depth	Adult	20.3-50.8 cm (Addair 1944); 20.4-29.6 cm, "shallow	
		water" (Chipps et al. 1994*); 40-100 cm (Jenkins and	
		Burkhead 1994); <22 cm, "shallow water" (Leftwich et	
		al. 1996)	-
	Juvenile	No information	NA
	Age 0	No information	NA
Water velocity	Adult	" swift clear water" (Addair 1944); 27.4–32.9 cm/s,	
		"fast water" (Chipps et al. 1994*); "rocky montane	
		with turbulent flow" (Kuehne and Barbour 1983); "fast	
		water" (Leftwich et al. 1996)	+
	Juvenile	"slower current than adults" (Jenkins and Kopia 1995)	+
	Age 0	No information	NA
Substrate size	Adult	" large rocks and gravel" (Addair 1944); "rubble"	
		(Kuehne and Barbour 1983); cobble (Chipps et al.	
		1994*); "rubble and boulder in runs and riffles" (Jenkins	
		and Burkhead 1994); "gravel, cobble, boulder, and	
		occasional bedrock" (Jenkins and Kopia 1995);	
		"boulder" (Leftwich et al. 1996)	+
	Juvenile	No information	NA
	Age 0	No information	NA
Embeddedness	Adult	No information	NA
	Juvenile	No information	NA
	Age 0	No information	NA
Silt cover	Adult	"relatively silt-free streams" (Jenkins and Kopia	
		1995); "Excessive siltation characterized areas where the	
		Candy Darter was absent or much diminished" (Chipps	
		et al. 1993*)	_
	Juvenile	No information	NA
	Age 0	No information	NA

Supplementary Table S.2. Pearson's product-moment correlation coefficients (Pearson's r) between instream microhabitat variables and nonmetric multidimensional scaling axes for two seasons. Pearson's r-values that were $\geq |0.50|$ are presented in Figure 4 and in Figure S.2.

	Spr	ing	Fall		
Variable	Axis 1	Axis 2	Axis 1	Axis 2	
Depth	0.40	0.92	0.96	-0.29	
Velocity	-0.62	0.79	-0.70	0.72	
Substrate size	-0.77	-0.64	-0.37	0.93	
Embeddedness	0.95	0.30	0.93	0.37	
Silt cover	0.91	-0.42	0.93	0.37	

				Area sampled	Density
Stream	Status	Life stage	Ν	(m ²)	(fish/100 m ²)
		G			
FFG	Robust	S Total	pring 115	13 059	0.88
LIG	Robust	Adult	66	15,055	0.00
		Juvenile	31		
		Age 0	18		
SFC	Robust	Total	175	14,614	1.20
		Adult	71	,	
		Juvenile	54		
		Age 0	50		
LC	Localized	Total	14	5,455	0.26
		Adult	11		
		Juvenile	3		
		Age 0	0		
			Fall		
EFG	Robust	Total	286	8,764	3.26
		Adult	69	-,,	
		Juvenile	87		
		Age 0	130		
SFC	Robust	Total	222	11,480	1.93
		Adult	80		
		Juvenile	37		
		Age 0	105		
LC	Localized	Total	52	4,383	1.19
		Adult	19		
		Juvenile	11		
		Age 0	22		

Supplementary Table S.3. Observations by life stage (N), area sampled, and density of Candy Darters in three streams (EFG = East Fork Greenbrier River; LC = Laurel Creek; SFC = South Fork Cherry River) and two seasons.

Supplementary Table S.4. Predicted individual habitat suitability (mean with 95% confidence intervals in parentheses) by life stage and season within four streams that varied in Candy Darter population status. Possible habitat suitability values ranged from 0 to 1, indicating no selection and maximum selection, respectively. "Multi-stage" is the average suitability across life stages; "multi-variable" is the average suitability calculated from all habitat variables within each stream. The East Fork Greenbrier River (EFG) and South Fork Cherry River (SFC) support robust Candy Darter populations; Laurel Creek (LC) supports a localized population; and the Sinking Creek (SC) population is extirpated.

		Adult	Iuvenile	Age-0	Multi-stage		
Variable	Stream	suitability	suitability	suitability	suitability		
			2	2			
		Spi	ring				
Depth	EFG	0.54 (0.03)	0.66 (0.02)	0.61 (0.03)	0.60 (0.02)		
	SFC	0.49 (0.02)	0.63 (0.03)	0.57 (0.03)	0.56 (0.02)		
	LC	0.50 (0.03)	0.62 (0.03)	0.56 (0.03)	0.56 (0.03)		
	SC	0.50 (0.03)	0.64 (0.03)	0.52 (0.03)	0.55 (0.03)		
Velocity	EFG	0.18 (0.01)	0.51 (0.02)	0.88 (0.01)	0.53 (0.01)		
	SFC	0.15 (0.01)	0.42 (0.01)	0.88 (0.01)	0.48 (0.01)		
	LC	0.16 (0.01)	0.46 (0.02)	0.89 (0.01)	0.50 (0.01)		
	SC	0.19 (0.01)	0.51 (0.02)	0.88 (0.02)	0.53 (0.01)		
Substrate	EFG	0.80 (0.02)	0.72 (0.02)	0.69 (0.01)	0.74 (0.01)		
	SFC	0.67 (0.02)	0.65 (0.02)	0.70 (0.01)	0.67 (0.01)		
	LC	0.57 (0.03)	0.54 (0.03)	0.75 (0.02)	0.62 (0.02)		
	SC	0.59 (0.03)	0.55 (0.02)	0.77 (0.02)	0.64 (0.01)		
Embeddedness	EFG	0.84 (0.02)	0.90 (0.02)	0.91 (0.01)	0.88 (0.01)		
	SFC	0.88 (0.02)	0.90 (0.02)	0.92 (0.02)	0.90 (0.02)		
	LC	0.52 (0.04)	0.60 (0.04)	0.66 (0.03)	0.59 (0.03)		
	SC	0.33(0.02)	0.41(0.03)	0.54(0.02)	0.43(0.02)		
Silt cover	EFG	0.33(0.02) 0.44(0.03)	0.67(0.02)	0.82(0.02)	0.13(0.02) 0.64(0.02)		
	SFC	0.58 (0.03)	0.75(0.02)	0.76 (0.01)	0.70 (0.02)		
	LC	0.53(0.04)	0.65(0.04)	0.62(0.03)	0.60(0.03)		
	SC	0.53(0.04)	0.02(0.01) 0.72(0.03)	0.02(0.02)	0.60(0.02)		
Multi-variable	EFG	0.57(0.01) 0.56(0.01)	0.72(0.03) 0.69(0.01)	0.72(0.02) 0.78(0.01)	0.67(0.02) 0.68(0.01)		
	SFC	0.55 (0.01)	0.67(0.01)	0.77(0.01)	0.66(0.02)		
	LC	0.46(0.02)	0.57(0.02)	0.70(0.01)	0.58(0.02)		
	SC	0.10(0.02) 0.44(0.02)	0.57(0.02)	0.69(0.01)	0.56(0.02)		
	50	0.44 (0.02)	0.37 (0.02)	0.09 (0.01)	0.50 (0.01)		
Fall							
Depth	EFG	0.52 (0.05)	0.49 (0.05)	0.51 (0.05)	0.51 (0.05)		
1	SFC	0.68 (0.04)	0.62 (0.05)	0.65 (0.04)	0.65 (0.04)		
	LC	0.66 (0.03)	0.61 (0.04)	0.64 (0.03)	0.63 (0.03)		
	SC	0.68 (0.04)	0.49 (0.04)	0.58 (0.03)	0.58 (0.03)		
Velocity	EFG	0.16 (0.02)	0.17 (0.02)	0.33 (0.02)	0.22 (0.02)		
	SFC	0.20(0.02)	0.22(0.03)	0.36(0.02)	0.26 (0.02)		
	SC	0.20(0.02) 0.21(0.02)	0.23(0.02) 0.22(0.02)	0.37(0.02) 0.36(0.01)	0.27(0.09) 0.26(0.02)		
Substrate	EFG	0.21(0.02) 0.86(0.03)	0.22(0.02) 0.43(0.02)	0.30(0.01) 0.42(0.02)	0.20(0.02) 0.57(0.02)		
2 abouture	SFC	0.76 (0.03)	0.38 (0.02)	0.41(0.02)	0.51 (0.02)		
	LC	0.73 (0.03)	0.44 (0.02)	0.47 (0.02)	0.55 (0.02)		

Variable	Stroom	Adult	Juvenile	Age-0	Multi-stage
Variable	Stream	Suitability	Suitability	Suitability	Suitability
	SC	0.73 (0.02)	0.49 (0.02)	0.49 (0.02)	0.57 (0.02)
Embeddedness	EFG	0.76 (0.05)	0.80 (0.04)	0.87 (0.03)	0.81 (0.04)
	SFC	0.78 (0.04)	0.80 (0.04)	0.86 (0.03)	0.81 (0.04)
	LC	0.53 (0.04)	0.58 (0.03)	0.73 (0.02)	0.61 (0.03)
	SC	0.25 (0.02)	0.35 (0.02)	0.58 (0.02)	0.40 (0.02)
Silt cover	EFG	0.34 (0.06)	0.37 (0.05)	0.59 (0.05)	0.43 (0.05)
	SFC	0.46 (0.05)	0.48 (0.05)	0.70 (0.04)	0.55 (0.04)
	LC	0.47 (0.04)	0.50 (0.04)	0.67 (0.03)	0.55 (0.04)
	SC	0.32 (0.04)	0.35 (0.03)	0.53 (0.03)	0.40 (0.02)
Multi-variable	EFG	0.53 (0.02)	0.45 (0.02)	0.54 (0.02)	0.51 (0.02)
	SFC	0.57 (0.02)	0.50 (0.02)	0.60 (0.02)	0.56 (0.02)
	LC	0.52 (0.02)	0.47 (0.02)	0.58 (0.01)	0.52 (0.02)
	SC	0.44 (0.02)	0.38 (0.02)	0.51 (0.01)	0.44 (0.01)

Supplementary Figure S.1. Length frequency histogram of Candy Darter TLs (N = 798 individuals) measured by snorkelers in the East Fork Greenbrier and South Fork Cherry rivers, West Virginia. We used different thresholds for separating juveniles from adult females (60 mm) and males (65 mm) based on differences in pigmentation. The line between adults and juveniles is drawn at 62.5 mm.

Supplementary Figure S.2. Nonmetric multidimensional scaling (NMDS) plots of habitat use, availability, and suitability for Candy Darters in fall: (A) habitat use by three life stages and availability in four streams (polygons; EFG = East Fork Greenbrier River; LC = Laurel Creek; SC = Sinking Creek; SFC = South Fork Cherry River); (B) predicted microhabitat suitability for adults; (C) predicted microhabitat suitability for juveniles; and (D) predicted microhabitat suitability for age-0 fish. Symbols for "LC use" represent locations used by Candy Darters in Laurel Creek during the fall. Variables that were highly correlated (Pearson's product-moment correlation coefficient [Pearson's r] \geq 0.50) with axes are shown. All Pearson's *r*-values are presented in Table S.2. The NMDS stress value was 0.14.

SUPPLEMENTAL REFERENCES

- Addair, J. 1944. The fishes of the Kanawha River system in West Virginia and some factors which influence their distribution. Doctoral dissertation. Ohio State University, Columbus.
- Chipps, S. R., W. B. Perry, and S. A. Perry. 1993. Status and distribution of *Phenacobius teretulus*, *Etheostoma osburni*, and "*Rhinichthys bowersi*" in the Monongahela National Forest, West Virginia. Virginia Journal of Science 44:48–58.
- Chipps, S. R., W. B. Perry, and S. A. Perry. 1994. Patterns of microhabitat use among four species of darters in three Appalachian streams. American Midland Naturalist 131:175– 180.
- Jenkins, R. E., and N. M. Burkhead. 1994. Freshwater fishes of Virginia. American Fisheries Society, Bethesda, Maryland.
- Jenkins, R. E., and B. L. Kopia. 1995. Population status of the Candy Darter, *Etheostoma* osburni, in Virginia 1994–1995, with historical review. Roanoke College, Department of Biology, Final Report, Salem, Virginia.
- Kuehne, R. A., and R. W. Barbour. 1983. The American darters. University Press of Kentucky, Lexington.
- Leftwich, K. N., C. A. Dolloff, M. K. Underwood, and M. Hudy. 1996. The Candy Darter (*Etheostoma osburni*) in Stony Creek, George Washington–Jefferson National Forest, Virginia: trout predation, distribution, and habitat associations. U.S. Forest Service, Final Report, Blacksburg, Virginia.